skip to main content


Search for: All records

Creators/Authors contains: "Hall, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Cyclones are a poorly described disturbance in tropical lakes, with the potential to alter ecosystems and compromise the services they provide. In November 2020, Hurricanes Eta and Iota made landfall near the Nicaragua-Honduras border, inundating the region with a large amount of late-season precipitation. To understand the impact of these storms on Lake Yojoa, Honduras, we compared 2020 and 2021 conditions using continuous (every 16 days) data collected from five pelagic locations. The storms resulted in increased Secchi depth and decreased algal abundance in December 2020, and January and February 2021, and lower-than-average accumulation of hypolimnetic nutrients from the onset of stratification (April 2021) until mixus in November 2021. Despite the reduced hypolimnetic nutrient concentrations, epilimnetic nutrient concentrations returned to (and in some cases exceeded) pre-hurricane levels following annual water column turnover in 2021. This response suggests that Lake Yojoa’s trophic state had only an ephemeral response to the disturbance imposed by the two hurricanes, likely due to internal input of sediment derived nutrients. These aseasonal storms acted as a large-scale experiment that resulted in nutrient dilution and demonstrated the resilience of Lake Yojoa’s trophic state to temporary nutrient reductions.

     
    more » « less
  2. Abstract

    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers.

     
    more » « less
  3. Data from ground-based ozone (O 3 ) vertical profiling platforms operated during the FRAPPE/DISCOVER-AQ campaigns in summer 2014 were used to characterize key processes responsible for establishing O 3 profile development in the boundary layer in the Northern Colorado Front Range. Morning mixing from the upper boundary layer and lower free troposphere into the lower boundary layer was the key process establishing the mid-morning boundary layer O 3 mixing ratio. Photochemical O 3 production throughout the boundary layer builds on the mid-morning profile. From late morning to mid-afternoon the continuing O 3 increase was nearly uniform through the depth of the profile measured by the tethersonde (~400 m). Ozonesondes flown on a near daily schedule over a four week period with multiple profiles on a number of days captured the full 1500 to 2000 m vertical extent of O 3 enhancements in the mixed boundary layer confirming O 3 production throughout the entire boundary layer. Continuous O 3 measurements from the Boulder Atmospheric Observatory (BAO) tall tower at 6 m and 300 m showed hourly O 3 at the 6 m level ≥75 ppb on 15% of the days. The diurnal variation on these days followed a pattern similar to that seen in the tethersonde profiles. The association of high O 3 days at the BAO tower with transport from sectors with intense oil and natural gas production toward the northeast suggests emissions from this industry were an important source of O 3 precursors and are crucial in producing peak O 3 events in the NCFR. Higher elevation locations to the west of the NCFR plains regularly experience higher O 3 values than those in the lower elevation NCFR locations. Exposure of populations in these areas is not captured by the current regulatory network, and likely underestimated in population O 3 exposure assessments. 
    more » « less
  4. Free, publicly-accessible full text available January 1, 2025
  5. Free, publicly-accessible full text available December 1, 2024
  6. Abstract

    We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets both binary neutron star (BNS) and neutron star–black hole (NSBH) mergers. A targeted search for generic GW transients was conducted on 40 FRBs. We find no significant evidence for a GW association in either search. Given the large uncertainties in the distances of our FRB sample, we are unable to exclude the possibility of a GW association. Assessing the volumetric event rates of both FRB and binary mergers, an association is limited to 15% of the FRB population for BNS mergers or 1% for NSBH mergers. We report 90% confidence lower bounds on the distance to each FRB for a range of GW progenitor models and set upper limits on the energy emitted through GWs for a range of emission scenarios. We find values of order 1051–1057erg for models with central GW frequencies in the range 70–3560 Hz. At the sensitivity of this search, we find these limits to be above the predicted GW emissions for the models considered. We also find no significant coincident detection of GWs with the repeater, FRB 20200120E, which is the closest known extragalactic FRB.

     
    more » « less
    Free, publicly-accessible full text available September 28, 2024
  7. Abstract The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org . The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages. 
    more » « less
    Free, publicly-accessible full text available July 28, 2024
  8. A bstract The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by leveraging the TPC to measure deposited energy per unit length along the particle trajectory, with mm resolution. We describe the non-uniform calorimetric reconstruction performance in the detector, showing dependence on the angle of the particle trajectory. Such non-uniform reconstruction directly affects the performance of the particle identification algorithms which infer particle type from calorimetric measurements. This work presents a new particle identification method which accounts for and effectively addresses such non-uniformity. The newly developed method shows improved performance compared to previous algorithms, illustrated by a 93.7% proton selection efficiency and a 10% muon mis-identification rate, with a fairly loose selection of tracks performed on beam data. The performance is further demonstrated by identifying exclusive final states in ν μ CC interactions. While developed using MicroBooNE data and simulation, this method is easily applicable to future LArTPC experiments, such as SBND, ICARUS, and DUNE. 
    more » « less